
Kinematic groups and dimensional analysis

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1981 J. Phys. A: Math. Gen. 14 1

(http://iopscience.iop.org/0305-4470/14/1/005)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 05:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/14/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 14 (1981) 1-14. Printed in Great Britain 

Kinematic groups and dimensional analysis 

JosC F Cariiienat, Mariano A del OlmoS and Mariano SantanderS 
+ Departamento d e  Fisica Tebrica, Facultad de Ciencias, Universidad de Zaragoza, Spain 
$ Departamento d e  Fisica Tebrica, Facultad de Ciencias, Universidad de Valladolid, Spain 

Received 18 March 1980. in final form 3 June 1980 

Abstract. It is shown that group theory may be useful in relation to dimensional analysis. 
The group theoretical support of dimensional analysis in universes described by kinematic 
groups is analysed. Its close relation to the structure of the corresponding kinematic group 
is also displayed by means of a simple dimensionalisation hypothesis. The scheme of 
contractions relating the kinematic groups enables us to discuss the dimensionalisation 
method. The same problem is also looked at in a different way: the possibility of adding 
dilatation-like transformations is studied. Finally, the role of mass in both relativistic and 
non-relativistic theories is also examined. 

1. Introduction 

Group theory is a very useful mathematical tool in physics, not only as the expression of 
invariance principles which act like ‘superlaws’ enabling us to determine the possible 
forms of the yet unknown physical laws, but also as an important methodological device 
in the process of remodelling modern science, because, as has rightly been pointed out 
by LCvy-Leblond (1976), ‘the chronological building order of a physical theory, 
however, rarely coincides with its logical structure’. 

As a noteworthy example, let us take the idea of space-time. A very fundamental 
fact of nature is the ‘abstract relativity principle’ stating the equivalence for the 
description of processes of a whole class of reference frames (i.e. procedures to assign 
coordinates to events) called ‘inertial frames’. The set of all transformations connecting 
two such inertial frames is a group. It has been shown by Bacry and L6vy-Leblond 
(1968) that under very general assumptions there are only a few possibilities for the 
abstract group structure. In all these groups, rotations and ‘inertial transformations’ 
form a subgroup and hence the space-time itself appears as the corresponding homo- 
geneous space, and this fact furnishes a group-theoretical support to the intuitive idea of 
space-time. If slightly more restrictive assumptions are considered, there are only two 
candidates: the Galilei ia and the PoincarC 8 groups, which are distinguished by the 
existence, in the second case, of a universal constant c intrinsically linked with the 
nature of space-time in the universe which it is supposed to describe. The meaning of c 
is that of the upper limit of speeds of all possible physical motions, as may be seen from 
the PoincarC-addition speed law which is obtained from the structure of 8 without any 
use of the ‘second postulate’ (see e.g. LCvy-Leblond 1976). Then c is related aposteriori 
to (and identified with) the speed of light, this link being neither necessarily true nor 
even convenient (in the sense that it obscures the true role of c as a ‘type C’ constant 
(LCvy-Leblond 1977)). In %? there is no such constant. The interpretation of the 
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constant c as the speed of light was the starting point in Einstein’s derivation of the 
special relativity theory. This was so because Einstein was going from a Galilean 
universe to an as yet unknown one. So, he had to use Galilean concepts in his approach 
to a new theory. But the same appearance of a universal constant permits an 
identification of two previously unrelated concepts (Galilean space and Galilean time), 
while the universal constant c must be taken as unity and dimensionless (see e.g. 
Lkvy-Leblond (1977) and other references therein). In the new Einsteinian universe 
there is only one independent dimension, which is neither length nor time but a new one 
synthesising both. 

All these very well known facts suggest the following idea: if there are universal 
constants (such as c )  related to the structure of space-time whose group-theoretical 
‘origin’ has been already indicated, then dimensional analysis must have a group- 
theoretical support, at least in the realm of kinematics. We feel the need to examine 
carefully this question, whose omission can lead (and has led) to misunderstandings, as 
was remarked by LCvy-Leblond (1967), the most relevant being the consideration of 
the magnetic moment of the electron as a ‘relativistic’ effect. 

This analysis also throws some light on the questions related to the ‘c +a’ limits of 
Einsteinian relativity. This problem has been clarified in a recent paper by LCvy- 
Leblond (1977), where he remarked that Galilean physics is not the limit of Einsteinian 
physics but only one limit, because there is another limit, which he christened (LCvy- 
Leblond 1965) Carroll relativity in honour of Lewis Carroll, the author of the 
wonderful book ‘Alice’s Adventures in Wonderland’. But the point we want to stress 
now is that one or other limit arises depending on the dimensionalisation we have 
previously chosen. 

A natural frame for such analysis is provided by the above-mentioned kinematic 
groups. They will be shown to have a very rich and symmetrical structure with respect 
to their ‘dimensional analysis’. These kinematic groups are nicely related by the process 
of contraction of groups (corresponding in some sense to the fact of constants going to 
zero), which will be seen to give rise to some kind of ‘dimensional splitting’. Although 
the physical interest of some kinematic groups is rather restricted (Carroll, para- 
PoincarC, para-Galilei, static), there are others which are undoubtedly relevant, so we 
feel that the interest of the present considerations goes beyond their academic 
significance. Moreover, a similar analysis may be useful for other theories (not 
kinematics) based on the assumption of invariance groups whose infinitesimal genera- 
tors are related to physical observables. 

We will also study a closely related mathematical problem, which can be loosely 
stated as follows. What ‘scalar’ transformations are ‘compatible’ with a given kinema- 
tical group? Under very general assumptions we will show that the only ones are those 
‘dilatation-like’ transformations which preserve the ‘dimensional structure’ of the 
universe, according to the result that one could foresee without any calculation. The 
number of such compatible ‘dilatation-like’ transformations must be the number of 
independent dimensions in the corresponding space-time. 

The organisation of this paper is as follows. In Q 2 we present a short summary of 
Bacry and Lkvy-Leblond’s paper (1968). Section 3 is devoted to explaining how the 
method we are going to propose for the assignment of dimensions works. In § 4 we 
study the relations between the process of contraction from one group to another and 
the dimensionalities of the associated universes. In D 5 the problem of dimensionality is 
considered from a complementary viewpoint, that is, by considering the possibilities of 
‘changing the scales’. In § 6 we analyse the role of mass in both classical and quantum 
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theories, and finally in 8 7 we give a very simple application of this method of 
dimensional analysis. 

2. The possible kinematic groups 

We present here only a brief summary of the results by Bacry and Lkvy-Leblond (1968) 
which furnish the natural framework for our search. 

Their starting pqint is that there is a sharp distinction between ‘the relativity 
principle’ and ‘a  relativity theory’. If the first is intended only as stating the complete 
physical equivalence of a continuous class of reference frames (called inertial frames) 
related among themselves by a well defined family of (physical) transformations (space 
and time translations, rotations and inertial transformations), each ‘relativity theory’ 
has a new and peculiar ingredient, that is, a specific group structure for the set of such 
transformations. If we constrain this group structure by the three followin& hypotheses: 

Hypothesis 1-Space isotropy 
Hypothesis 2-Parity and time reversal are (not inner) automorphisms of the group 

structure 
Hypothesis 3-A weak form of the causality principle (inertial transformations in 

any given direction form a non-compact subgroup) 
the only possible Lie algebras for the kinematic groups are those given in table 1, where 
H, PI, .TI, K, ( i  = 1, 2, 3) are the (non-Hermitian) infinitesimal generators of time trans- 
lations ( b ) ,  space translations ( a ) ,  rotations (4 )  and pure inertial transformations (U), in 
such a way that 

(b,  a, U, R )  = exp(bH) exp(a.  P) exp(o. K )  exp ( 4 .  J ) .  

Observations: 

[A,  B ]  = C means [A,,  B,] = E , , k C k  

[A, RI = C means [A,,  B ]  = C, 

[A,  B ]  = C means [A,,  B,]  = S,,C. 

In all these groups the numbers a, p, F ,  p, y are related by the equations 

p-CUp=o,  / L++p=o .  

Table 1. 

[J, HI = 0 [J ,  PI = P [J ,  K ]  = K [J,  J ]  = J 

‘Relative time’ groups ‘Absolute time’ groups 
_ _ _ _ ~  

Inh SO(4) 
para- Newton- para- 

de Sitter f PoincarC PoincarC Carroll Hooke i Galilei Galilei Static 
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If such a number appears as such in the table it is to be understood that it does not 
vanish. 

We have not ‘normalised’ the structure constants in table 1 to a standard value, and 
this question, to be discussed later, here obscures in some sense the fact that for some 
algebras there are different real forms corresponding to the same complex algebra, 
hence different groups. 

3. The assignment of dimensions 

The parameters b, a,, U,, 4, have a physical meaning as the parameters corresponding to 
a general inertial transformation, and we must assign to them ‘physical dimensions’. Let 
T, L,, S,, A ,  stand for the physical dimensions of b, a,, U,, qb,, i = 1, 2 ,  3 respectively, and I 
for the dimension of dimensionless magnitudes. Then, for the expression (6, a, U, R )  = 
exp(bH) exp(a . P) exp(u. K )  exp(4 .  J )  to have meaning, all arguments in the 
exponentials must be dimensionless, and this serves to assign a dimension to each of the 
generators, namely 

[HI = T-l,  [Pi1 = L?, [K,1 = Syl, [Jll = Ay1, 

with the usual symbol [ ]for dimensions. Now if the dimensional assignments are made 
in this way, the structure constants a, p, y, 1, p of the Lie algebra of some kinematic 
groups are promoted to dimensional numbers. This situation is very unsatisfactory for 
two reasons. First, the assignment of dimensions depends heavily on arbitrary con- 
ventions. (For example, is an angle dimensionless? The inclusion of angle in a special 
category of ‘supplementary units’ by the 1 l th  General Conference of Weights and 
Measures (see e.g. de Boer 1979) clearly shows that the question about angle can be 
answered yes or no according to one’s opinion.) Second, there is a more fundamental 
reason, from a theoretical viewpoint: although an abstract Lie group and its associated 
Lie algebra can have many different realisations and representations, its structure 
constants are quite independent of those and indeed are intrinsic to the abstract group. 
Hence we must look for a choice of dimensions making the structure constants pure 
numbers; and in some sense this choice is the only canonical one, thus removing the 
arbitrariness behind the ‘naive’ dimensional assignments. This idea is stated in our 
main postulate, namely: 

Dimensionalisation hypothesis. The assignment of dimensions to parameters (or 
generators) in each kinematic group must be made in such a way that the non-zero 
structure constants are dimensionless. 

In order to see how this hypothesis works, we may analyse first a simple case. Let us 
consider the subgroup generated by P and J in the Galilean case (the Euclidean group 
in three dimensions). The corresponding parameters are a and 4, that is, space 
translations and rotations. The defining relations for an arbitrary choice of the 
generators of rotations around the three axes are given by [J1, Jz] = a3J3 and cyclically. 
If a parameter qbi has some dimension, the corresponding generator Ji must have the 
inverse dimension for the product J .  q5 to be dimensionless. Our dimensionalisation 
hypothesis implies that the generators Ji are also dimensionless and therefore angles 
have no dimension. Furthermore, the relation [J1, P2] = p3P3 (and its cyclic counter- 
parts) shows that the requirement for the p’s to be dimensionless, taking account of the 



Kinematic groups and dimensional analysis 5 

dimensionless nature of J,, implies that all three P’s have a common dimension, and 
hence all three parameters a, have the inverse dimension, say length. Note that the 
jacobi identity for J,, J,, P, shows that necessarily a = /3, so that an adequate rescaling of 
the J’s  (of the angle measure for each axis) brings the commutation relations back to 
their canonical form with a, = Pi = 1. 

In other words, had they been written as [J,, J,,] = U,, [J,, P,,] = SP,, and similarly 
for the others (with any non-zero real numbers), they would not have contradicted the 
isotropy of space, but would only have hidden it, leaving it for the student of surveying, 
as appears in the ‘Parable of the surveyors’ (Taylor and Wheeler 1966), to make the 
discovery of the isotropy of the space. 

Therefore we see that the use of our dimensionalisation hypothesis does lead to the 
more habitual choice: angles are dimensionless, lengths have the same dimension 
irrespective of their orientation. Notice that, in fact, this is implicitly assumed by 
writing the usual commutation relations in table 1 free of any number. 

Let us see how our hypothesis works for kinematic groups. We assign a dimension 
to each parameter b, a,, a y ,  , , (too many dimensions!). Next, rotational invariance, 
which was embodied in the commutation relations in the first row of table 1, implies that 
all a,, a,,, a, have the same dimension, and similarly for the three U ’ S  and 4’s (these last 
being dimensionless), by the same argument as the one used above. Then we have (at 
most) three different dimensions, say 

The symbol I will be used for the ‘dimension’ of dimensionless magnitudes. The 
argument in the exponential exp(bH) and similar ones are to be dimensionless, and this 
serves to assign a dimension to the generators [HI = T-’, [Pi] = L-’, [Kil= S - ’ ,  [Ji] = I. 

For each kinematic group our hypothesis gives rise to some dimensional relations 
between T, L and S which we refer to as a ‘dimensional structure’. These relations 
come from the Lie brackets in the algebra [P, HI = aK, [P, PI = PJ, [K,  K1= pJ, 

We require these equations to be dimensionally correct; when a, P, p, y or p are not 
[K,  HI = yP, [K,  PI = pH. 

zero we have 

= L-’T-’s, [PI  = L-2, [ P I  = s-2, 
[ r ]  = LT-’s-’, [ p ]  = L-’Ts-’ respectively. 

Before embarking on an analysis of each possible case, we remark that the relations 
p - a p  = 0 and p + yp = 0 which hold between structure constants are always dimen- 
sionally correct. 

3.1, De Sitter 

All structure constants are non-zero, so that the five dimensional equations remain, 
which implies L = T = S = I. In this universe all kinematic magnitudes are expressed by 
pure numbers. From our ‘Galilean’ viewpoint, we could say that in the de Sitter 
universe there is a ‘characteristic’ length, a ‘characteristic’ time and a ‘characteristic’ 
speed which may be used as natural units, and then lengths, times and speeds are 
dimensionless. 
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3.2. Poincare' 

Here the combinations LT-'S-', S-' and L-'TS-' must be dimensionless. Then S = I  
and L = T, and there is only one dimensional magnitude, which unifies length and time. 
It is natural for speeds to be dimensionless, because here c is the 'characteristic' speed 
related to p through p a cP2. The application of the dimensionalisation hypothesis to 
this case simply amounts to taking c to be dimensionless (the natural choice). 

3.3. Para -Poincare' 

In this case L-'T-'S, L-* and L-'TS-l are to be dimensionless, and hence L = I  and 
T = S .  There is a characteristic length, and time and speeds may be considered as 
unified. 

3.4. Carroll 

Now we have only L-'TS-' dimensionless. Then there are (any) two 'primitive' 
dimensions, the third one being derived from them in order to make the former 
combination dimensionless. Note that this is analogous to the usual situation in the 
Galilean case, as we shall see, but there is an important difference, namely that if we 
take L, T as primitive, then S = L-'T. 

3.5. New ton -Hoo ke 

L-'T-'S and LT-'S-' dimensionless implies T = I and L = S.  There is a 'charac- 
teristic' time, and we have a case analogous to those of 80 3 . 2  and 3.3. 

3.6. Galilei 

Only LT-'S-' must be dimensionless. This leaves two independent dimensions; if we 
take L and T as independent, S .becomes LT-'. Here no further comment is needed. 

3.7. Para-Galilei 

There are also two independent dimensions; the third is related to them through 
L-'T-'S = I .  For example, if L and T are the independent dimensions, S = LT. 

3.8. Static 

All structure constants being zero, L, T and S are completely independent dimensions, 
and there is no relation between them. 

A glance at the results obtained for each case shows that there exists a highly 
symmetrical structure. In fact, all possibilities are realised, each once. From the three 
initial dimensions, L, T, S,  we have the following possibilities: 

(i) all three are dimensionless (de Sitter); 
(ii) one independent dimension, the other being dimensionless (and in the three 

(iii) two independent dimensions, the other derived (Galilei, Carroll, para-Galilei) ; 
(iv) three independent dimensions (static). 

possible ways: para-Poincard, Newton and Poincare); 
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Notice that all results about dimensional constraints in a given kinematical group 
can be displayed in the following simple way. Let A1,  . . . , A l o  be a ‘physical basis’ of 
the kinematic group (i.e. the generators of time translations, those of space translations, 
etc, but no ‘mixed’ subgroups), with commutation relations [A,,  A,]  = cf:Ak. If we 
denote by d ,  the dimension assigned to each A,, they will be constrained by the 
equations d ,  . d, = d k  whenever c f: # 0. However, note that not every element of the Lie 
algebra has a dimension (e.g. H +PI has not), so that the restriction to a ‘physical basis’ 
is an essential step in our process of dimensionalisation. 

Now the question of the ‘normalisation’ of the structure constants can be discussed. 
For each universe (identified with a homogeneous space of the kinematic group by the 
subgroup generated by K and J )  there is a ‘canonical’ or ‘natural’ choice of both 
dimensions and units, reducing structure constants to pure numbers and making these 
pure numbers take ‘special’ values (such as + 1  or -1). Although these two steps are 
usually realised simultaneously, they are logically independent. In fact, for each Lie 
algebra, since the generators have a precise physical meaning, the only admissible 
transformations are the scale changes, corresponding to a change in the units of 
measure of time, length and speed. As the initial choice of H ,  P, K, J which led to the 
initial values of cy, y,  6, p, p was arbitrary, separate changes in the units of time, length 
and speed are necessary in order to get the ‘canonical’ system of units. Let these 
changes be represented by the substitutions 

H + PH, p + qp, K + rK, 

with p ,  q, r non-zero real numbers. The new values of the structure constants are 

P4 
r 

Q +--CY, 
rP 
4 

Y+--Y,  P + S2PI 
4‘ 
P 

p -+ --p, 

and from these relations one is able to see that, in a given kinematic group, it is generally 
not possible to have all non-zero structure constants equal to 1 (e.g. if P < 0, it will be 
impossible to get p > 0 by means of scale change). However, it turns out to be always 
possible to reduce all the non-zero structure constants to +1 or -1, and, once this 
reduction has been done, some of the different real Lie algebras obtained from one set 
of zero structure constants lead to candidates for kinematic groups not satisfying 
hypothesis 3 ( B  2), and then they must be rejected. This leaves only the eleven groups 
given in table I of Bacry and L6vy-Leblond (1968). 

It is worthy of remark that, in most cases, the ‘natural’ system does not fix all the 
units. For instance, in the simplest case of PoincarC relativity, speeds are to be 
measured relative to the limiting speed c, but space and/or time can be measured in 
meters, seconds, yards or anything else. 

4. Contractions and dimensionality 

All kinematic groups are related among themselves by contraction processes (Bacry 
and L6vy-Leblond 1968) which may be pictured very well in figure 1, where all 
contraction processes, indicated by arrows, go from above to below, and where arrows 
‘at four o’clock’ are time-speed (hereafter r s )  contractions, arrows ‘at six o’clock’ are 
space-time contractions (It) and arrows ‘at eight o’clock’ are space-speed (Is) contrac- 
tions. 
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Figure 1. Lie algebra structure of kinematic groups. 

A simple glance at the results in § 3 shows that, in general, the contraction processes 
always produce a kind of 'dimensional splitting'. A careful analysis shows that all the 
results can be summed up in the following recipe (where ab denotes Is and It, ts and A ,  B 
stand for the corresponding dimensions L, S ;  L, T ;  T, S ) .  

(i) If all are dimensionless (de Sitter only), the contraction ab produces a unique 
dimension A = B. 

(ii) If there is one primitive dimension (which 'unifies' two of L, S, T )  say C = A ,  the 
contraction ab splits C and A into two different dimensions, and indirectly produces a 
new (although derived) dimension B =AC-' .  

(iii) In the case where there are two primitive dimensions, say A and B, and a 
derived dimension, C =AB,  then the contraction ab produces a new primitive dimen- 
sion which takes the role of C. 

As these rules are not self-evident, we shall discuss them further. As an example, let 
us take the sequence of contractions dS - N - 9 - S, leading from the de Sitter 
to the static group, passing through the Newton-Hooke and Galilei groups. In dS there 
are no dimensions, so the Is contraction generates in N a unique dimension L = S which 
takes the role of both Galilean length and speed (then time becomes dimensionless). 
Now the It contraction in N (rule (ii)) splits L and S and produces a new dimension T, 
related to L and S through T = LS- ' ;  then, if we take, as is usual, L and T as primitive 
dimensions we will have S = LT-'. To study the ts contraction in 3, according to rule 
(iii), if T and S are taken as the primitive dimensions in 9 (and then L = TS), the 
contraction produces a new primitive dimension L, length, which gives the result known 
for S. 

is rt f S  
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Notice that, although at first sight the rules (i)-(iii) appear somewhat incomplete, 
they are not so because not all contractions can be applied ‘effectively’ to any group (if 
one wants to obtain a new group): e.g. if the It contraction is applied to the PoincarC 
group, we obtain again the PoincarC group; then rule (ii) covers all cases. Similarly, for 
rule (iii), in the cases where there are two primitive dimensions and the contraction ab is 
‘effective’, the derived dimension is always C = A B  (and not C = A B - ’  or anything 
else). 

That dimensional splitting arises from the process of contraction is not surprising, 
because this process is associated with that of some structure constant going to zero, and 
then the constant that vanishes loses its role of ‘dimensional synthesiser’ (LCvy-Leblond 
1977) which it previously had. 

5. Kinematic groups and dilatations 

We now take an opposite and somewhat complementary viewpoint to the one adopted 
in 8 0  3 and 4 of this paper. In fact, when we say that a (general) inertial transformation 
is (b, a, U, R) ,  we are implicitly choosing some set of units to measure b, a, U, and, if we 
wish to study the kinematic groups completely ab initio, we have to find out how these 
choices can be made, and this feature must be incorporated in the framework from the 
beginning. 

From the formal viewpoint, this leads one to consider a new generator in the group, 
D, whose associated transformations we expect to be just ‘scale changes’, this being 
understood in a very weak sense, as when we speak of ‘inertial transformations’ 
generated by K we do not mean that these transformations act on the space-time. We 
emphasise that we are not saying that the transformations generated by D are always a 
symmetry of all interactions. All we mean is that, if only kinematics is involved, some 
magnitudes can be measured in many ‘natural’ ways. 

Then the problem is clear. By imposing some natural hypotheses on the behaviour 
of D, how many possibilities are there for these enlarged kinematic groups? An 
‘enlarged’ kinematic group is supposed to be an 11-parameter Lie group, generated by 
D, H, P, K, J. Besides the hypotheses of Bacry and L6vy-Leblond, we add the follow- 
ing ones with respect to the new generator D :  

Hypothesis 4-The generator D is a scalar under rotations 
Hypothesis 5-Parity and time reversal are automorphisms of the ‘enlarged’ kine- 

Hypothesis 6-The subgroup generated by D is a non-compact subgroup. 
matic group and they leave D invariant 

Hypotheses 4 and 5 are implemented by means of the relations 

[J,  Dl = 0 ,  .rr:D+D, O:D+D.  

The search for the possible enlarged kinematic groups is similar to the one carried 
out by Bacry and LCvy-Leblond (del Olmo 1976). It is easy to see that the hypotheses 1, 
2, 4, 5 suffice to write all non-zero Lie brackets as follows: 

[P, HI = CUK, 

[P, PI = PJ, 
[K, HI = YP, 

( 5 . 1 ~ )  
[K,  PI = P K  [K,  KI = PJ,  

and 

[D, H ]  = TH, [D, P] = AP, [D, K ]  = uK, (5.16) 
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where a ,  y, p, p, p,  T ,  A ,  a are real numbers. The requirement of the Jacobi identity for 
all triples of generators leads to the following relations: 

~(T+A-u )=O 

The values of the parameters a, p, y, p, p are only constrained by the same equations 
occurring in the ‘non-enlarged’ case (block (5 .2a)) .  The equations (5.1) show that H, P, 
J and K span an ideal and therefore any enlarged kinematic group contains the 
corresponding kinematical group as an invariant subgroup, the factor group being 
isomorphic to the subgroup generated by D. Moreover it displays a semi-direct product 
structure; the action of the subgroup generated by D on the corresponding kinematic 
group is governed by equations (5 . lb ) ,  and therefore it depends strongly on tke 
vanishing of some of the parameters. 

It must also be remarked that hypothesis 6 plays a relevant role here. In fact the 
subgroup generated by D is one-dimensional arid therefore it will be isomorphic to 
either T =  U(1) or [w. Moreover, the Lie bracket relations ( 5 . l b )  show that this group 
acts on the one-dimensional subgroups generated by H, P, and K,  respectively; only in 
the case where the two subgroups are isomorphic to [w can a non-trivial continuous 
homomorphism defining the semi-direct product group structure exist. Therefore, if D 
generates a compact subgroup, then r = A = a = 0 .  According to hypothesis 6, we will 
assume that this is not the case. 

The complete analysis following the ‘purely kinematic part’ scheme, reads as 
follows. 

(i) D e  Sitter Here a ,  y, p, p, p are all different from zero, so that the equations 
(5 .2 )  imply r = A  = a  = 0. 

(ii) Poincare‘ Now a = p = 0 so that we obtain a = 0 and r = A. 
(iii) Para-Poincare‘ 
(iv) Carroll 
(v) Newton-Hooke 

(vi) Galilei 
(vii) Para-Galilei 

(viii) Static 
The analogy with the results in § 3 is now clear and in fact, the symbols r, A, U have 

been chosen deliberately to indicate the transformation properties (under the generator 
D )  of time, length and speed parameters. If the relations between 7, A, U in any given 
group are rewritten in ‘multiplicative notation’ and for each Greek letter its Latin 
capital is taken, the dimensional equations of the universe of that group are obtained. 
This result can be seen as follows: the equations ( 5 . l b )  are of the form [D, A , ]  = A,A, for 
some constants A,  ({A,} being a ‘physical basis’ of the corresponding algebra, including 
H, three P’s, three K’s and three J’s) .  The Jacobi identity for D, A,  and A, reduces to 
( A k  - A ,  -A,)cf: =0 ,  any i , j ,  k.  Hence if cf: f 0, we obtain A k  = A ,  + A ,  which is to be 
compared with dk = d , .  d,. It follows immediately that the action of the subgroup 
generated by D on the corresponding kinematic group preserves the dimensional 
structure of the group. In fact, a group element with second-kind canonical coordinates 

In this case y = p = 0, and then A = 0 and r = a. 
a = y = p = p = 0 implies -7 + A  +a = 0. 

We have only r - A  +a = 0. 
Similarly we obtain r = 0 and A = a. 

Here r + A -a  = 0. 
There are no restrictions on 7, A ,  U. 
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a,, relative to a ‘physical’ basis A,, is transformed by the inner automorphism associated 
with exp(sD) in the element El exp{esAr. a,A,}, as a repeated use of the Baker-Campbell 
relation shows. Then, the numerical relations A k  = A ,  + A ,  whenever c t  # 0 imply a set 
of numerical relations between the scale factorsf, = exp(sA,), namely,fk = f , .  f, if c t  f 0. 

Formally these numerical relations between f ’ s  are those dimensional ones verified 
by d’s .  Now the analogy between the result in §§ 3 and 5 is clarified: any kinematic 
group can be enlarged only by means of a scalar transformation which is a ‘scale change’ 
compatible with the ‘dimensional structure’ of the corresponding group, in the sense of 
leaving invariant the ‘characteristic constants’ of the universe (which are closely related 
to the structure constants of the Lie algebra). For example, in Poincart, besides the 
trivial case T = A  = 0 therl is only the possibility T = A # 0, and then D induces in the 
Poincart group joint ‘space-time’ dilatations, that are the only admissible ones if we 
have to preserve the values of y and p O= c-*. Similarly, in the Carroll group, there are 
two linearly independent solutions of -7 + A  +a = 0, say (7, A, v) = (0, 1, -1) and 
( T ,  A ,  p )  = (1, 0, l), corresponding to space and time dilatations, in perfect agreement 
with the fact that there are two primitive dimensions, the scaling of whose units can be 
arbitrarily chosen, fixing then the ‘scaling’ of the units of the third dimension S = L-’T; 
as a matter of verification, space dilatation (T ,  A ,  ci) = (0, 1, -1) acts as (6, a, U, R )  = 
(b,  e‘a, e-’u, R) modifying the speed parameter in the ‘abnormal’ way e-’u. We refrain 
from discussing all cases which are similar. Now, space-time can also be considered as 
the homogeneous space of the ‘enlarged’ group; the isotropy subgroup is isomorphic to 
the one generated by D, K, J. Dilatations act on space-time in the ‘good way’, as is 
easily calculated: 

6 .  The role of mass 

It may be worthwhile to spend a little time in the analysis of the role of the mass, which 
has not yet arisen in our comments. The mass is not a kinematic feature but a dynamical 
one: in the absence of forces, the motion of a particle does not depend on its mass. 
However, the mass appears linked to the structure of the relativity group, and we could 
then ask whether this group structure can account for the mass dimension. 

The most relevant relativity groups being the Galilei 9 and PoincarC 8 groups, we 
will restrict our analysis to these. In the other cases the analysis would be very similar to 
that of 9 or 8, depending whether the group lies in the class of absolute or relative time. 

There is a substantial difference between the quantum and the classical case, 
connected to one another by the ‘limit’ h + 0 which produces, from the dimensional 
analysis viewpoint, a kind of ‘dimensional splitting’. As a link between the symmetry 
group and the physical magnitudes (observables) is more directly established in the 
quantum case, we will begin by considering this case. 

The elementary systems are described by irreducible (semi) unitary projective 
representations of the symmetry group which may be obtained from the irreducible 
semi-unitary representations of an auxiliary group called the ‘representation group’ 
(see e.g. Cariiiena and Santander (1979) and other references therein). This represen- 
tation group (G being 9 or 8) is a central extension of G by the dual group of 
H2(G,  T ) .  In the cases we are considering, the representation groups are the universal 
covering group of the ‘extended’ Galilei group (Ltvy-Leblond 1971, Cariiiena and 
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Santander 1975) and the universal covering group 9* of 9 (Wigner 1939). The 
infinitesimal generators in a projective representation of % (or 9) reproduce the 
commutation relations of the group g (or 9*) and they may be considered as the 
physical observables of the system (up to a factor i ) .  Then linear momentum will have 
dimension L-l, energy T-’ and so on. 

In a more explicit form, g is the set = {(e, g*)/e E R, g* E G*} where the composi- 
tion law is defined by 

(e’, g * ’ ) ( e , g * ) = ( e ’ + B + $ ~ ’ ~ + ~ ’ R * ’ a ,  g*’g*) wi thg*=(b ,a ,  U , R * ) ) , R * E S U ( ~ ) .  

Any irreducible unitary representation of @, when restricted to the subgroup {(e, e ) } ,  is a 
multiple of a one-dimensional representation because of the central nature of such a 
subgroup, and hence it will be of the form 8 + elms. The label m of such a representation 
is to be interpreted as the mass of the corresponding elementary system (Carifiena and 
Santander 1975). In order that the composition law be dimensionally correct, the 
parameter 0 must have dimension L2T-’, and therefore the mass dimension must be a 
derived dimension M = L-2T. It may seem to be surprising, but this mass dimension is 
the appropriate one for the action to be dimensionless. It is worthy of note that the 
quantum mechanical assumption that the symmetry group be realised in a projective 
way plus the dimensionalisation hypothesis implies that the action is dimensionless just 
as naturally as c must be in the 9-relativistic case. 

When the group 9 is considered, mass appears in a different way, namely, as an 
eigenvalue of a Casimir operator. Within an irreducible representation the invariant 
H 2  - P2 is to be represented by a scalar operator, the canonical choice of H 2  - P 2  = m21 
defining the mass. Then, the dimension of mass is the same as that of H (or P), namely 
M = L-’ = T-l,  and the action will also be dimensionless. 

Now, let us go to the classical case. A treatment closer to the quantum case would 
use the canonical realisations of the pertinent symmetry group, but we feel it is useful to 
follow a treatment based on the Lagrangian formalism whose link with the structure of 
the symmetry group has been analysed by LBvy-Leblond (1969). In that paper 
gauge-variant Lagrangians are considered, and they are related to the exponents of the 
group which are essentially the elements of H*(G*, R). Once the Lagrangian is known, 
the physical magnitudes such as linear momentum, energy, etc, are cc-nstructed from it 
in the usual way, e.g. p = aL/ai, E = p i  - L etc. 

Now, in order to carry on the dimensionalisation process, we must introduce a new 
primitive dimension associated with the Lagrangian. The same peculiarity would arise 
if we tried to carry out the process with the help of the canonical formalism; in fact, if the 
phase space of a particle is ( r ,  p ) ,  r having dimension of length, the relation { r ,  p }  = 1 
would lead to nothing new because of the Poisson bracket being dimensionless for any 
possible dimension of p .  We must therefore assign a new primitive dimension to p ,  and 
this fact corresponds to the choice of a new dimension for the Lagrangian. 

Let us take the case of %. All gauge-variant Lagrangians are equivalent under % t o  
those given by L = ;mi2. The parameter m is called the mass. So, if we take as a new 
primitive dimension the mass M, the dimensions of the Lagrangian (and therefore that 
of energy) will be ML2T-2, that of the linear momentum will be h4LT-l and so on. It is 
to be recalled that in this case m comes as a %-exponent. 

In the case of 9-relativity, the general theory (LBvy-Leblond 1969) tells us that L 
can be chosen equivalent to the usual one L = -m( l  -r2)1’2. Now, i being dimension- 
less, the dimensions of the Lagrangian and energy are just the new mass dimension, 
which is also that of linear momentum. 
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We finish this section with a few remarks: first of all, dilatation-like transformations 
which were allowed by the Galilei group (those verifying T - A  + m = 0) would preserve 
the quantum Galilean mass dimension only if restricted by the additional requirement 
T - 2A = 0. This result could be foreseen because the Schrodinger equation includes a 
given fixed mass. These dilatations, acting on space-time as x + e'x, t + e''?, are the 
dilatations appearing in the Schrodinger group (Niederer 1972) and they have been 
used in an attempt to construct a time operator in 'non-relativistic' quantum mechanics 
(Almond 1974). 

We also feel it necessary to remark that the quantum-classical transition is in some 
sense very similar to the processes of contraction relating different kinematic groups, as 
they have been studied in § 4. In the quantum case, when properly interpreted, the 
constant h does not appear. The action is dimensionless, and with a proper choice of 
measure units we have h = 1. The transition to the classical case needs the introduction 
of A,  and afterwards we must consider the limit h + 0 in much the same way that we have 
introduced the constant c and then the limit c-'+O in the transition from the 
Einsteinian to the Galilean universe. But the limit h + 0 will produce a dimensional 
splitting as well, and a new primitive dimension, M, arises. Now, energies will be 
decoupled from frequencies as well as linear momentum from wavenumbers, just in the 
same way that, in the transition from an Einsteinian to a Galilean universe, space 
becomes decoupled from time, giving rise to a new dimension. Whereas the tra,nsition 
from 9 to 9 is simply a group contraction, the formal structure behind the limit h + 0 is 
not so clear. Consequently, the preceding remarks have only a descriptive character. 

7. One more application 

It has been remarked by Lkvy-Leblond that dimensional analysis when carefully 
handled is a useful tool (Lkvy-Leblond 1967). In particular, he showed that a Galilean 
elementary particle 'cannot possess intrinsic electromagnetic properties besides an 
electric charge and a magnetic dipole moment'. Our aim is to show that the same result 
may also be concisely proved in the frame of the dimensional analysis we are 
developing. 

Let us suppose a charged elementary particle with mass m has a spin s. The electric 
(magnetic) multipole moment at order I is (up to a factor) the coefficient of D'4 (D'A) in 
the expressions of the energy of the particle in an electrostatic (magnetostatic) field. 
Here, 4 and A are the usual scalar and vector potentials while D' are differential 
operators of order 1 in the spatial coordinates. 

In  order to carry out the dimensional analysis, we start by looking for the dimensions 
of 4 and A which will be quickly assigned by demanding that q4 and qA have energy 
and momentum dimension respectively. Immediately, we assign the corresponding 
dimensions to 6") and g"). The results we obtain are as follows: 

T-lQ-l  L-lQ-l QL' QL'+'T-l 

L-lQ- l  L-lQ-l QL' 
Galilean QM 
B-relativistic QM QL' 

Notice that the dimensions of 6") and p' ' )  depend on the theory we are considering, 
in contrast to the assignment of dimensions by Lkvy-Leblond. 
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There are only two intrinsic dimensions associated with the particle, the charge Q 
and the mass M. The mass dimension is a derived one, M = L-'T (Galilean case) or 
M = L-' (P-relativistic case). 

In the Galilean case, from these two dimensions Q and M we are only able to find 
QL' for I = O  and QL(k+l)T-l  for k =l .  This turns out to be a new proof of 
Ltvy-Leblond's statement. On the other hand, in a P-relativistic theory we are able to 
construct QL' for any 1 from Q and M = L-'. Therefore, a P-relativistic elementary 
particle can possess any 1-order intrinsic electric and magnetic multipole moment. 

Acknowledgments 

The authors would like to thank the anonymous referee's contribution furnishing a 
simpler expression of some results in Q 5 .  We also thank J R Bravo for his useful 
comments on this paper. 

References 

Almond D J 1974 Ann.  Znst H. Poincart 19A 105 
Bacry H and Ltvy-Leblond J M 1968 J.  Math. Phys. 9 1605 
de Boer J 1979 A m .  J. Phys. 47 818 
C a r i k n a  J F and Santander M 1975 J. Math. Phys. 16 1416 
- 1979 J. Math. Phys. 20 2168 
Levy-Leblond J M 1965 A n n .  Inst. H. Poincart 3A 1 
- 1967 Comm. Math. Phys. 6 286 
__ 1969 Comm. Math. Phys. 12 64 
- 1971 in Group Theory and Its Applications vol I1 ed E M Loebl (New York: Academic) 
- 1976 A m .  J. Phys. 44 271 
- 1977 Rio. Nuovo Cim. 7 187 
Niederer U 1972 Hela. Phys. Acta 45 802 
del Olmo M A 1976 Tesina de Licenciatura: Ampliacion de grupos cinema'ticos (Universidad de Valladolid) 
Taylor E F and Wheeler J A 1966 Spacetime Physics (San Francisco: Freeman) 
Wigner E P 1939 A n n .  Math. 40 149 


